plot1222 <- glm(pos ~ age, binomial, data = t1222) |>
predict2() %>% as.data.frame() %>%
ggplot(aes(x = age,y = fit))+
geom_line(aes(col = "Dec 2022"))+
geom_ribbon(aes(x = age,y = fit,
ymin=lwr, ymax=upr),alpha = 0.5,fill = "#0808cf")+
ylim(0,101)+
theme_minimal()+
scale_color_manual(name = "Y series",
values = c("Dec 2022" = "#0808cf"))+
labs(y = "Seroprevalence (%)")+
geom_point(data= t1222, aes(x = age,y = m * pos + eps),shape = "|",
col = "#0808cf")+
theme(
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
legend.position = "hide",
legend.text = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15))+
annotate("text", x = 3, y = 90, label = c("Dec 2022"),size = 6)
plot0423 <- glm(pos ~ age + I(age ^2), binomial, data = t423) |>
predict2() %>% as.data.frame() %>%
ggplot(aes(x = age,y = fit))+
geom_line(aes(col = "Apr 2023"))+
geom_ribbon(aes(x = age,y = fit,
ymin=lwr, ymax=upr),alpha = 0.5,fill = "#ed097b")+
ylim(0,101)+
theme_minimal()+
scale_color_manual(name = "Y series",
values = c("Apr 2023" = "#ed097b"))+
labs(y = "Seroprevalence (%)")+
geom_point(data= t423, aes(x = age, m * pos + eps),
shape = "|",
col = "#ed097b")+
theme(
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
legend.position = "hide",
legend.text = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15))+
annotate("text", x = 3, y = 90, label = c("Apr 2023"),size = 6)
plot0823 <- glm(pos ~ age + I(age^2) + I(age^3), binomial, data = t823) |>
predict2() %>% as.data.frame() %>%
ggplot(aes(x = age,y = fit))+
geom_line(aes(col = "Aug 2023"))+
geom_ribbon(aes(x = age,y = fit,
ymin=lwr, ymax=upr),alpha = 0.5,fill = "#ed6b00")+
ylim(0,101)+
theme_minimal()+
scale_color_manual(name = "Y series",
values = c("Aug 2023" = "#ed6b00"))+
labs(y = "Seroprevalence (%)")+
geom_point(data= t823, aes(x = age, m * pos + eps),
shape = "|",
col = "#ed6b00")+
theme(
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
legend.position = "hide",
legend.text = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15))+
annotate("text", x = 3, y = 90, label = c("Aug 2023"),size = 6)
plot1223 <- glm(pos ~ age + I(age^2) + I(age^3), binomial, data = t1223) |>
predict2() %>% as.data.frame() %>%
ggplot(aes(x = age,y = fit))+
geom_line(aes(col = "Dec 2023"))+
geom_ribbon(aes(x = age,y = fit,
ymin=lwr, ymax=upr),alpha = 0.5,fill = "#33516b")+
ylim(0,101)+
theme_minimal()+
scale_color_manual(name = "Y series",
values = c("Dec 2023" = "#33516b"))+
labs(y = "Seroprevalence (%)")+
geom_point(data= t1223, aes(x = age, m * pos + eps),
shape = "|",
col = "#33516b")+
theme(
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 15),
legend.position = "hide",
legend.text = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15))+
annotate("text", x = 3, y = 90, label = c("Dec 2023"),size = 6)