Fit age-stratified seroprevalence across multiple time points. Also try to monotonize age (or birth cohort) - specific seroprevalence.
Usage
age_time_model(
data,
time_col = "date",
grouping_col = "group",
age_correct = F,
le = 512,
ci = 0.95,
monotonize_method = "pava"
)Arguments
- data
- input data, must have`age`, `status`, time, group columns, where group column determines how data is aggregated
- time_col
- name of the column for time (default to `date`)
- grouping_col
- name of the column for time (default to `group`)
- age_correct
- a boolean, if `TRUE`, monotonize age-specific prevalence. Monotonize birth cohort-specific seroprevalence otherwise.
- le
- number of bins to generate age grid, used when monotonizing data
- ci
- confidence interval for smoothing
- monotonize_method
- either "pava" or "scam"
Value
a list of class time_age_model with 4 items
- out
a data.frame with dimension n_group x 9, where columns `info`, `sp`, `foi` store output for non-monotonized data and `monotonized_info`, `monotonized_sp`, `monotonized_foi`, `monotonized_ci_mod` store output for monotonized data
- grouping_col
name of the column for grouping
- age_correct
a boolean indicating whether the data is monotonized across age or cohort
- datatype
whether the input data is aggregated or line-listing data