Skip to contents

Dataset

hav_be_1993_1994
Hepatitis A serological data from Belgium in 1993 and 1994 (aggregated)
hav_be_2002
Hepatitis A serological data from Belgium in 2002 (line listing)
hav_bg_1964
Hepatitis A serological data from Bulgaria in 1964 (aggregated)
hbv_ru_1999
Hepatitis B serological data from Russia in 1999 (aggregated)
hcv_be_2006
Hepatitis C serological data from Belgium in 2006 (line listing)
mumps_uk_1986_1987
Mumps serological data from the UK in 1986 and 1987 (aggregated)
parvob19_be_2001_2003
Parvo B19 serological data from Belgium from 2001-2003 (line listing)
parvob19_ew_1996
Parvo B19 serological data from England and Wales in 1996 (line listing)
parvob19_fi_1997_1998
Parvo B19 serological data from Finland from 1997-1998 (line listing)
parvob19_it_2003_2004
Parvo B19 serological data from Italy from 2003-2004 (line listing)
parvob19_pl_1995_2004
Parvo B19 serological data from Poland from 1995-2004 (line listing)
rubella_mumps_uk
Rubella - Mumps data from the UK (aggregated)
rubella_uk_1986_1987
Rubella serological data from the UK in 1986 and 1987 (aggregated)
tb_nl_1966_1973
Tuberculosis serological data from the Netherlands 1966-1973 (aggregated)
vzv_be_1999_2000
VZV serological data from Belgium (Flanders) from 1999-2000 (aggregated)
vzv_be_2001_2003
VZV serological data from Belgium from 2001-2003 (line listing)
vzv_parvo_be
VZV and Parvovirus B19 serological data in Belgium (line listing)

Models

sir_basic_model()
Basic SIR model
sir_static_model()
SIR static model (age-heterogeneous, endemic equilibrium)
sir_subpops_model()
SIR Model with Interacting Subpopulations
mseir_model()
MSEIR model
polynomial_model()
Polynomial models
farrington_model()
The Farrington (1990) model.
weibull_model()
The Weibull model.
fp_model()
A fractional polynomial model.
lp_model()
A local polynomial model.
hierarchical_bayesian_model()
Hierarchical Bayesian Model
penalized_spline_model()
Penalized Spline model
mixture_model()
Fit a mixture model to classify serostatus
estimate_from_mixture()
Estimate seroprevalence and foi by combining mixture model and regression

Plotting functions

plot_gcv()
Plotting GCV values with respect to different nn-s and h-s parameters.
plot(<polynomial_model>)
plot() overloading for polynomial model
plot(<farrington_model>)
plot() overloading for Farrington model
plot(<weibull_model>)
plot() overloading for Weibull model
plot(<fp_model>)
plot() overloading for fractional polynomial model
plot(<lp_model>)
plot() overloading for local polynomial model
plot(<mseir_model>)
plot() overloading for MSEIR model
plot(<sir_basic_model>)
plot() overloading for SIR model
plot(<sir_static_model>)
plot() overloading for SIR static model
plot(<sir_subpops_model>)
plot() overloading for SIR sub populations model
plot(<hierarchical_bayesian_model>)
plot() overloading for hierarchical_bayesian_model
plot(<penalized_spline_model>)
plot() overloading for penalized spline
plot(<mixture_model>)
plot() overloading for mixture model
plot(<estimate_from_mixture>)
plot() overloading for result of estimate_from_mixture
set_plot_style()
Helper to adjust styling of a plot

Other utilities

serosv serosv-package
serosv: model infectious disease parameters
est_foi()
Estimate force of infection
pava()
Monotonize seroprevalence
correct_prevalence()
Estimate the true sero prevalence using Bayesian estimation
transform_data()
Generate a dataframe with `t`, `pos` and `tot` columns from `t` and `seropositive` vectors.
compute_ci()
Compute confidence interval
compute_ci.fp_model()
Compute confidence interval for fractional polynomial model
compute_ci.lp_model()
Compute confidence interval for local polynomial model
compute_ci.weibull_model()
Compute confidence interval for Weibull model
compute_ci.penalized_spline_model()
Compute confidence interval for penalized_spline_model
compute_ci.mixture_model()
Compute confidence interval for mixture model
find_best_fp_powers()
Returns the powers of the GLM fitted model which has the lowest deviance score.