Function reference
- 
          
          
hav_be_1993_1994 - Hepatitis A serological data from Belgium in 1993 and 1994 (aggregated)
 
- 
          
          
hav_be_2002 - Hepatitis A serological data from Belgium in 2002 (line listing)
 
- 
          
          
hav_bg_1964 - Hepatitis A serological data from Bulgaria in 1964 (aggregated)
 
- 
          
          
hbv_ru_1999 - Hepatitis B serological data from Russia in 1999 (aggregated)
 
- 
          
          
hcv_be_2006 - Hepatitis C serological data from Belgium in 2006 (line listing)
 
- 
          
          
mumps_uk_1986_1987 - Mumps serological data from the UK in 1986 and 1987 (aggregated)
 
- 
          
          
parvob19_be_2001_2003 - Parvo B19 serological data from Belgium from 2001-2003 (line listing)
 
- 
          
          
parvob19_ew_1996 - Parvo B19 serological data from England and Wales in 1996 (line listing)
 
- 
          
          
parvob19_fi_1997_1998 - Parvo B19 serological data from Finland from 1997-1998 (line listing)
 
- 
          
          
parvob19_it_2003_2004 - Parvo B19 serological data from Italy from 2003-2004 (line listing)
 
- 
          
          
parvob19_pl_1995_2004 - Parvo B19 serological data from Poland from 1995-2004 (line listing)
 
- 
          
          
rubella_uk_1986_1987 - Rubella serological data from the UK in 1986 and 1987 (aggregated)
 
- 
          
          
tb_nl_1966_1973 - Tuberculosis serological data from the Netherlands 1966-1973 (aggregated)
 
- 
          
          
vzv_be_1999_2000 - VZV serological data from Belgium (Flanders) from 1999-2000 (aggregated)
 
- 
          
          
vzv_be_2001_2003 - VZV serological data from Belgium from 2001-2003 (line listing)
 
- 
          
          
rubella_mumps_uk - Rubella - Mumps data from the UK (aggregated)
 
- 
          
          
vzv_parvo_be - VZV and Parvovirus B19 serological data in Belgium (line listing)
 
- 
          
          
sir_basic_model() - Basic SIR model
 
- 
          
          
sir_static_model() - SIR static model (age-heterogeneous, endemic equilibrium)
 
- 
          
          
sir_subpops_model() - SIR Model with Interacting Subpopulations
 
- 
          
          
mseir_model() - MSEIR model
 
- 
          
          
polynomial_model() - Polynomial models
 
- 
          
          
farrington_model() - The Farrington (1990) model.
 
- 
          
          
weibull_model() - The Weibull model.
 
- 
          
          
fp_model() - A fractional polynomial model.
 
- 
          
          
lp_model() - A local polynomial model.
 
- 
          
          
hierarchical_bayesian_model() - Hierarchical Bayesian Model
 
- 
          
          
penalized_spline_model() - Penalized Spline model
 
- 
          
          
mixture_model() - Fit a mixture model to classify serostatus
 
- 
          
          
estimate_from_mixture() - Estimate seroprevalence and foi by combining mixture model and regression
 
- 
          
          
age_time_model() - Age-time varying seroprevalence Fit age-stratified seroprevalence across multiple time points. Also try to monotonize age (or cohort) - specific seroprevalence.
 
- 
          
          
plot_gcv() - Plotting GCV values with respect to different nn-s and h-s parameters.
 
- 
          
          
plot(<polynomial_model>) - plot() overloading for polynomial model
 
- 
          
          
plot(<farrington_model>) - plot() overloading for Farrington model
 
- 
          
          
plot(<weibull_model>) - plot() overloading for Weibull model
 
- 
          
          
plot(<fp_model>) - plot() overloading for fractional polynomial model
 
- 
          
          
plot(<lp_model>) - plot() overloading for local polynomial model
 
- 
          
          
plot(<mseir_model>) - plot() overloading for MSEIR model
 
- 
          
          
plot(<sir_basic_model>) - plot() overloading for SIR model
 
- 
          
          
plot(<sir_static_model>) - plot() overloading for SIR static model
 
- 
          
          
plot(<sir_subpops_model>) - plot() overloading for SIR sub populations model
 
- 
          
          
plot(<hierarchical_bayesian_model>) - plot() overloading for hierarchical_bayesian_model
 
- 
          
          
plot(<penalized_spline_model>) - plot() overloading for penalized spline
 
- 
          
          
plot(<mixture_model>) - plot() overloading for mixture model
 
- 
          
          
plot(<estimate_from_mixture>) - plot() overloading for result of estimate_from_mixture
 
- 
          
          
plot(<age_time_model>) - Plot output for age_time_model
 
- 
          
          
set_plot_style() - Helper to adjust styling of a plot
 
- 
          
          
serosvserosv-package - serosv: model infectious disease parameters
 
- 
          
          
est_foi() - Estimate force of infection
 
- 
          
          
pava() - Monotonize seroprevalence
 
- 
          
          
correct_prevalence() - Estimate the true sero prevalence using Bayesian estimation
 
- 
          
          
transform_data() - Generate a dataframe with `t`, `pos` and `tot` columns from `t` and `seropositive` vectors.
 
- 
          
          
compare_models() - Compare models
 
- 
          
          
compute_ci() - Compute confidence interval
 
- 
          
          
compute_ci.fp_model() - Compute confidence interval for fractional polynomial model
 
- 
          
          
compute_ci.lp_model() - Compute confidence interval for local polynomial model
 
- 
          
          
compute_ci.weibull_model() - Compute confidence interval for Weibull model
 
- 
          
          
compute_ci.penalized_spline_model() - Compute confidence interval for penalized_spline_model
 
- 
          
          
compute_ci.mixture_model() - Compute confidence interval for mixture model
 
- 
          
          
compute_ci.age_time_model() - Compute confidence interval for time age model
 
- 
          
          
find_best_fp_powers() - Returns the powers of the GLM fitted model which has the lowest deviance score.