Function reference
-
hav_be_1993_1994
- Hepatitis A serological data from Belgium in 1993 and 1994 (aggregated)
-
hav_be_2002
- Hepatitis A serological data from Belgium in 2002 (line listing)
-
hav_bg_1964
- Hepatitis A serological data from Bulgaria in 1964 (aggregated)
-
hbv_ru_1999
- Hepatitis B serological data from Russia in 1999 (aggregated)
-
hcv_be_2006
- Hepatitis C serological data from Belgium in 2006 (line listing)
-
mumps_uk_1986_1987
- Mumps serological data from the UK in 1986 and 1987 (aggregated)
-
parvob19_be_2001_2003
- Parvo B19 serological data from Belgium from 2001-2003 (line listing)
-
parvob19_ew_1996
- Parvo B19 serological data from England and Wales in 1996 (line listing)
-
parvob19_fi_1997_1998
- Parvo B19 serological data from Finland from 1997-1998 (line listing)
-
parvob19_it_2003_2004
- Parvo B19 serological data from Italy from 2003-2004 (line listing)
-
parvob19_pl_1995_2004
- Parvo B19 serological data from Poland from 1995-2004 (line listing)
-
rubella_mumps_uk
- Rubella - Mumps data from the UK (aggregated)
-
rubella_uk_1986_1987
- Rubella serological data from the UK in 1986 and 1987 (aggregated)
-
tb_nl_1966_1973
- Tuberculosis serological data from the Netherlands 1966-1973 (aggregated)
-
vzv_be_1999_2000
- VZV serological data from Belgium (Flanders) from 1999-2000 (aggregated)
-
vzv_be_2001_2003
- VZV serological data from Belgium from 2001-2003 (line listing)
-
vzv_parvo_be
- VZV and Parvovirus B19 serological data in Belgium (line listing)
-
sir_basic_model()
- Basic SIR model
-
sir_static_model()
- SIR static model (age-heterogeneous, endemic equilibrium)
-
sir_subpops_model()
- SIR Model with Interacting Subpopulations
-
mseir_model()
- MSEIR model
-
polynomial_model()
- Polynomial models
-
farrington_model()
- The Farrington (1990) model.
-
weibull_model()
- The Weibull model.
-
fp_model()
- A fractional polynomial model.
-
lp_model()
- A local polynomial model.
-
hierarchical_bayesian_model()
- Hierarchical Bayesian Model
-
penalized_spline_model()
- Penalized Spline model
-
mixture_model()
- Fit a mixture model to classify serostatus
-
estimate_from_mixture()
- Estimate seroprevalence and foi by combining mixture model and regression
-
plot_gcv()
- Plotting GCV values with respect to different nn-s and h-s parameters.
-
plot(<polynomial_model>)
- plot() overloading for polynomial model
-
plot(<farrington_model>)
- plot() overloading for Farrington model
-
plot(<weibull_model>)
- plot() overloading for Weibull model
-
plot(<fp_model>)
- plot() overloading for fractional polynomial model
-
plot(<lp_model>)
- plot() overloading for local polynomial model
-
plot(<mseir_model>)
- plot() overloading for MSEIR model
-
plot(<sir_basic_model>)
- plot() overloading for SIR model
-
plot(<sir_static_model>)
- plot() overloading for SIR static model
-
plot(<sir_subpops_model>)
- plot() overloading for SIR sub populations model
-
plot(<hierarchical_bayesian_model>)
- plot() overloading for hierarchical_bayesian_model
-
plot(<penalized_spline_model>)
- plot() overloading for penalized spline
-
plot(<mixture_model>)
- plot() overloading for mixture model
-
plot(<estimate_from_mixture>)
- plot() overloading for result of estimate_from_mixture
-
set_plot_style()
- Helper to adjust styling of a plot
-
serosv
serosv-package
- serosv: model infectious disease parameters
-
est_foi()
- Estimate force of infection
-
pava()
- Monotonize seroprevalence
-
correct_prevalence()
- Estimate the true sero prevalence using Bayesian estimation
-
transform_data()
- Generate a dataframe with `t`, `pos` and `tot` columns from `t` and `seropositive` vectors.
-
compute_ci()
- Compute confidence interval
-
compute_ci.fp_model()
- Compute confidence interval for fractional polynomial model
-
compute_ci.lp_model()
- Compute confidence interval for local polynomial model
-
compute_ci.weibull_model()
- Compute confidence interval for Weibull model
-
compute_ci.penalized_spline_model()
- Compute confidence interval for penalized_spline_model
-
compute_ci.mixture_model()
- Compute confidence interval for mixture model
-
find_best_fp_powers()
- Returns the powers of the GLM fitted model which has the lowest deviance score.