Skip to contents
library(serosv)
#> Warning: replacing previous import 'magrittr::extract' by 'tidyr::extract' when
#> loading 'serosv'

Parametric Bayesian framework

Currently, serosv only has models under parametric Bayesian framework

Proposed approach

Prevalence has a parametric form \(\pi(a_i, \alpha)\) where \(\alpha\) is a parameter vector

One can constraint the parameter space of the prior distribution \(P(\alpha)\) in order to achieve the desired monotonicity of the posterior distribution \(P(\pi_1, \pi_2, ..., \pi_m|y,n)\)

Where:

  • \(n = (n_1, n_2, ..., n_m)\) and \(n_i\) is the sample size at age \(a_i\)
  • \(y = (y_1, y_2, ..., y_m)\) and \(y_i\) is the number of infected individual from the \(n_i\) sampled subjects

Farrington

Refer to Chapter 10.3.1

Proposed model

The model for prevalence is as followed

\[ \pi (a) = 1 - exp\{ \frac{\alpha_1}{\alpha_2}ae^{-\alpha_2 a} + \frac{1}{\alpha_2}(\frac{\alpha_1}{\alpha_2} - \alpha_3)(e^{-\alpha_2 a} - 1) -\alpha_3 a \} \]

For likelihood model, independent binomial distribution are assumed for the number of infected individuals at age \(a_i\)

\[ y_i \sim Bin(n_i, \pi_i), \text{ for } i = 1,2,3,...m \]

The constraint on the parameter space can be incorporated by assuming truncated normal distribution for the components of \(\alpha\), \(\alpha = (\alpha_1, \alpha_2, \alpha_3)\) in \(\pi_i = \pi(a_i,\alpha)\)

\[ \alpha_j \sim \text{truncated } \mathcal{N}(\mu_j, \tau_j), \text{ } j = 1,2,3 \]

The joint posterior distribution for \(\alpha\) can be derived by combining the likelihood and prior as followed

\[ P(\alpha|y) \propto \prod^m_{i=1} \text{Bin}(y_i|n_i, \pi(a_i, \alpha)) \prod^3_{i=1}-\frac{1}{\tau_j}\text{exp}(\frac{1}{2\tau^2_j} (\alpha_j - \mu_j)^2) \]

  • Where the flat hyperprior distribution is defined as followed:

    • \(\mu_j \sim \mathcal{N}(0, 10000)\)

    • \(\tau^{-2}_j \sim \Gamma(100,100)\)

The full conditional distribution of \(\alpha_i\) is thus \[ P(\alpha_i|\alpha_j,\alpha_k, k, j \neq i) \propto -\frac{1}{\tau_i}\text{exp}(\frac{1}{2\tau^2_i} (\alpha_i - \mu_i)^2) \prod^m_{i=1} \text{Bin}(y_i|n_i, \pi(a_i, \alpha)) \]

Fitting data

To fit Farrington model, use hierarchical_bayesian_model() and define type = "far2" or type = "far3" where

  • type = "far2" refers to Farrington model with 2 parameters (\(\alpha_3 = 0\))

  • type = "far3" refers to Farrington model with 3 parameters (\(\alpha_3 > 0\))

df <- mumps_uk_1986_1987
model <- hierarchical_bayesian_model(df, type="far3")
#> 
#> SAMPLING FOR MODEL 'fra_3' NOW (CHAIN 1).
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.000126 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.26 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 5000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 5000 [ 10%]  (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%]  (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%]  (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%]  (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%]  (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 14.91 seconds (Warm-up)
#> Chain 1:                14.326 seconds (Sampling)
#> Chain 1:                29.236 seconds (Total)
#> Chain 1:
#> Warning: There were 1236 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is 1.07, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess

model$info
#>                       mean      se_mean           sd          2.5%
#> alpha1        1.400750e-01 5.772746e-04 5.061637e-03  1.291531e-01
#> alpha2        1.971363e-01 6.891601e-04 6.915543e-03  1.855918e-01
#> alpha3        7.289266e-03 1.518418e-03 7.518513e-03  1.120555e-04
#> tau_alpha1    4.356277e-01 1.212644e-01 9.969059e-01  8.370028e-06
#> tau_alpha2    1.047710e+00 3.895075e-01 2.035456e+00  1.255557e-05
#> tau_alpha3    2.040321e+00 1.247945e+00 3.455228e+00  6.342945e-06
#> mu_alpha1    -3.309940e+00 2.884706e+00 3.864842e+01 -8.296621e+01
#> mu_alpha2     6.802868e-01 1.689830e+00 2.588370e+01 -6.616912e+01
#> mu_alpha3     2.083459e+00 1.746417e+00 2.930201e+01 -5.886563e+01
#> sigma_alpha1  6.371450e+01 1.307429e+01 3.332064e+02  5.015577e-01
#> sigma_alpha2  8.334825e+01 4.038113e+01 1.560984e+03  3.719014e-01
#> sigma_alpha3  8.502171e+01 2.868993e+01 1.157427e+03  3.159379e-01
#> lp__         -2.534185e+03 6.823333e-01 3.897737e+00 -2.541944e+03
#>                        25%           50%           75%         97.5%
#> alpha1        1.367395e-01  1.412622e-01  1.437116e-01  1.490064e-01
#> alpha2        1.929334e-01  1.950358e-01  2.016050e-01  2.122837e-01
#> alpha3        1.336679e-03  4.927735e-03  1.129148e-02  2.722506e-02
#> tau_alpha1    1.060576e-03  4.558585e-03  2.647481e-01  3.975193e+00
#> tau_alpha2    1.928452e-03  1.281223e-02  8.139368e-01  7.230101e+00
#> tau_alpha3    2.614862e-03  5.170448e-02  2.966259e+00  1.001836e+01
#> mu_alpha1    -1.703190e+01 -9.766189e-01  1.329607e+00  9.839007e+01
#> mu_alpha2    -1.427125e+00  4.241891e-01  1.024570e+01  5.114096e+01
#> mu_alpha3    -1.369344e+00 -2.821753e-02  1.753812e+00  7.802320e+01
#> sigma_alpha1  1.943496e+00  1.481106e+01  3.070642e+01  3.456672e+02
#> sigma_alpha2  1.108421e+00  8.834616e+00  2.277171e+01  2.822211e+02
#> sigma_alpha3  5.806246e-01  4.397813e+00  1.955597e+01  3.970900e+02
#> lp__         -2.536565e+03 -2.534811e+03 -2.531149e+03 -2.526663e+03
#>                    n_eff     Rhat
#> alpha1         76.880659 1.020363
#> alpha2        100.696016 1.002847
#> alpha3         24.517797 1.010750
#> tau_alpha1     67.583632 1.001489
#> tau_alpha2     27.308103 1.001907
#> tau_alpha3      7.665891 1.125965
#> mu_alpha1     179.498324 1.004001
#> mu_alpha2     234.620692 1.010656
#> mu_alpha3     281.513284 1.001463
#> sigma_alpha1  649.516789 1.001963
#> sigma_alpha2 1494.307920 1.000572
#> sigma_alpha3 1627.527210 1.000915
#> lp__           32.631107 1.019529
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.

Log-logistic

Proposed approach

The model for seroprevalence is as followed

\[ \pi(a) = \frac{\beta a^\alpha}{1 + \beta a^\alpha}, \text{ } \alpha, \beta > 0 \]

The likelihood is specified to be the same as Farrington model (\(y_i \sim Bin(n_i, \pi_i)\)) with

\[ \text{logit}(\pi(a)) = \alpha_2 + \alpha_1\log(a) \]

  • Where \(\alpha_2 = \text{log}(\beta)\)

The prior model of \(\alpha_1\) is specified as \(\alpha_1 \sim \text{truncated } \mathcal{N}(\mu_1, \tau_1)\) with flat hyperprior as in Farrington model

\(\beta\) is constrained to be positive by specifying \(\alpha_2 \sim \mathcal{N}(\mu_2, \tau_2)\)

The full conditional distribution of \(\alpha_1\) is thus

\[ P(\alpha_1|\alpha_2) \propto -\frac{1}{\tau_1} \text{exp} (\frac{1}{2 \tau_1^2} (\alpha_1 - \mu_1)^2) \prod_{i=1}^m \text{Bin}(y_i|n_i,\pi(a_i, \alpha_1, \alpha_2) ) \]

And \(\alpha_2\) can be derived in the same way

Fitting data

To fit Log-logistic model, use hierarchical_bayesian_model() and define type = "log_logistic"

df <- rubella_uk_1986_1987
model <- hierarchical_bayesian_model(df, type="log_logistic")
#> 
#> SAMPLING FOR MODEL 'log_logistic' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 5.2e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.52 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 5000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 5000 [ 10%]  (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%]  (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%]  (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%]  (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%]  (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 4.335 seconds (Warm-up)
#> Chain 1:                2.113 seconds (Sampling)
#> Chain 1:                6.448 seconds (Total)
#> Chain 1:
#> Warning: There were 830 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is 1.05, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess

model$type
#> [1] "log_logistic"
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.