Imperfect test
Function correct_prevalence()
is used for estimating the
true prevalence if the serological test used is imperfect
Arguments:
-
data
the input data frame, must either have:age
,pos
,tot
columns (for aggregated data)OR
age
,status
columns for (linelisting data)
bayesian
whether to adjust sero-prevalence using the Bayesian or frequentist approach. If set toTRUE
, true sero-prevalence is estimated using MCMC.init_se
sensitivity of the serological test (default value0.95
)init_sp
specificity of the serological test (default value0.8
)study_size_se
(applicable whenbayesian=TRUE
) sample size for sensitivity validation study (default value1000
)study_size_sp
(applicable whenbayesian=TRUE
) sample size for specificity validation study (default value1000
)chains
(applicable whenbayesian=TRUE
) number of Markov chains (default to1
)warmup
(applicable whenbayesian=TRUE
) number of warm up runs (default value1000
)iter
(applicable whenbayesian=TRUE
) number of iterations (default value2000
)
The function will return a list of 2 items:
-
info
if
bayesian = TRUE
contains estimated values for se, sp and corrected seroprevalenceelse return the formula for computing corrected seroprevalence
corrected_sero
return a data.frame withage
,sero
(corrected sero) andpos
,tot
(adjusted based on corrected prevalence)
# ---- estimate real prevalence using Bayesian approach ----
data <- rubella_uk_1986_1987
output <- correct_prevalence(data, warmup = 1000, iter = 4000, init_se=0.9, init_sp = 0.8, study_size_se=1000, study_size_sp=3000)
#>
#> SAMPLING FOR MODEL 'prevalence_correction' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000106 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.06 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
#> Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
#> Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
#> Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
#> Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
#> Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
#> Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
#> Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
#> Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 2.134 seconds (Warm-up)
#> Chain 1: 3.991 seconds (Sampling)
#> Chain 1: 6.125 seconds (Total)
#> Chain 1:
# check fitted value
output$info[1:2, ]
#> mean se_mean sd 2.5% 25% 50%
#> est_se 0.9277289 9.789702e-05 0.005943015 0.9158427 0.9239500 0.9277263
#> est_sp 0.8027427 9.223906e-05 0.006921599 0.7887524 0.7980911 0.8027793
#> 75% 97.5% n_eff Rhat
#> est_se 0.9318139 0.9390842 3685.315 0.9997749
#> est_sp 0.8075447 0.8158433 5630.969 0.9999903
# ---- estimate real prevalence using frequentist approach ----
freq_output <- correct_prevalence(data, bayesian = FALSE, init_se=0.9, init_sp = 0.8)
# check info
freq_output$info
#> [1] "Formula: real_sero = (apparent_sero + sp - 1) / (se + sp -1)"
# compare original prevalence and corrected prevalence
ggplot()+
geom_point(aes(x = data$age, y = data$pos/data$tot, color="apparent prevalence")) +
geom_point(aes(x = output$corrected_se$age, y = output$corrected_se$sero, color="estimated prevalence (bayesian)" )) +
geom_point(aes(x = freq_output$corrected_se$age, y = freq_output$corrected_se$sero, color="estimated prevalence (frequentist)" )) +
scale_color_manual(
values = c(
"apparent prevalence" = "red",
"estimated prevalence (bayesian)" = "blueviolet",
"estimated prevalence (frequentist)" = "royalblue")
)+
labs(x = "Age", y = "Prevalence")
Fitting corrected data
Data after seroprevalence correction
Bayesian approach
suppressWarnings(
corrected_data <- farrington_model(
output$corrected_se,
start=list(alpha=0.07,beta=0.1,gamma=0.03))
)
plot(corrected_data)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
Frequentist approach
suppressWarnings(
corrected_data <- farrington_model(
freq_output$corrected_se,
start=list(alpha=0.07,beta=0.1,gamma=0.03))
)
plot(corrected_data)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
Original data
suppressWarnings(
original_data <- farrington_model(
data,
start=list(alpha=0.07,beta=0.1,gamma=0.03))
)
plot(original_data)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.