Skip to contents

Refers to section 10.3

Usage

hierarchical_bayesian_model(
  data,
  type = "far3",
  chains = 1,
  warmup = 1500,
  iter = 5000
)

Arguments

data

the input data frame, must either have `age`, `pos`, `tot` columns (for aggregated data) OR `age`, `status` for (linelisting data)

type

type of model ("far2", "far3" or "log_logistic")

chains

number of Markov chains

warmup

number of warmup runs

iter

number of iterations

Value

a list of class hierarchical_bayesian_model with 6 items

datatype

type of datatype used for model fitting (aggregated or linelisting)

df

the dataframe used for fitting the model

type

type of bayesian model far2, far3 or log_logistic

info

parameters for the fitted model

sp

seroprevalence

foi

force of infection

Examples

# \donttest{
df <- mumps_uk_1986_1987
model <- hierarchical_bayesian_model(df, type="far3")
#> 
#> SAMPLING FOR MODEL 'fra_3' NOW (CHAIN 1).
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.000168 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.68 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 5000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 5000 [ 10%]  (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%]  (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%]  (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%]  (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%]  (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 16.86 seconds (Warm-up)
#> Chain 1:                98.178 seconds (Sampling)
#> Chain 1:                115.038 seconds (Total)
#> Chain 1: 
#> Warning: There were 288 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: There were 11 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
#> https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
model$info
#>                       mean      se_mean           sd          2.5%
#> alpha1        1.396732e-01 2.328172e-04 5.926643e-03  1.290067e-01
#> alpha2        1.989632e-01 3.342249e-04 8.454176e-03  1.847781e-01
#> alpha3        9.017286e-03 2.957517e-04 7.503320e-03  2.519932e-04
#> tau_alpha1    2.051039e+00 2.925237e-01 5.992958e+00  1.814318e-06
#> tau_alpha2    4.280878e+00 1.545375e+00 1.261621e+01  5.514011e-06
#> tau_alpha3    1.594944e+00 2.713658e-01 4.513571e+00  1.717967e-06
#> mu_alpha1    -2.434489e+00 4.143249e+00 4.467754e+01 -1.656101e+02
#> mu_alpha2    -9.043922e-01 1.406475e+00 3.373188e+01 -9.031034e+01
#> mu_alpha3     2.147579e+00 1.666808e+00 4.272829e+01 -9.818932e+01
#> sigma_alpha1  9.673678e+03 9.523462e+03 2.012224e+05  2.027127e-01
#> sigma_alpha2  8.037575e+01 1.664371e+01 5.816331e+02  1.342710e-01
#> sigma_alpha3  1.665419e+02 4.235920e+01 1.470059e+03  2.354869e-01
#> lp__         -2.534311e+03 2.684310e-01 4.176499e+00 -2.542650e+03
#>                        25%           50%           75%         97.5%      n_eff
#> alpha1        1.353546e-01  1.393536e-01  1.435425e-01  1.520502e-01  648.01829
#> alpha2        1.931939e-01  1.981250e-01  2.037919e-01  2.181404e-01  639.83066
#> alpha3        3.301399e-03  6.948630e-03  1.310897e-02  2.798314e-02  643.65402
#> tau_alpha1    4.699710e-04  1.339575e-02  4.377299e-01  2.433537e+01  419.72073
#> tau_alpha2    1.099782e-03  3.547442e-02  9.730938e-01  5.546799e+01   66.64842
#> tau_alpha3    3.847899e-04  1.424805e-02  4.511886e-01  1.803311e+01  276.64990
#> mu_alpha1    -4.777740e+00  1.761566e-01  4.990839e+00  8.616947e+01  116.27771
#> mu_alpha2    -3.043304e+00  1.912986e-01  2.809284e+00  6.930927e+01  575.19790
#> mu_alpha3    -4.356601e+00  8.834931e-02  7.109717e+00  1.097394e+02  657.14323
#> sigma_alpha1  1.511461e+00  8.640059e+00  4.612799e+01  7.424105e+02  446.43988
#> sigma_alpha2  1.013731e+00  5.309408e+00  3.015428e+01  4.258861e+02 1221.23065
#> sigma_alpha3  1.488748e+00  8.377652e+00  5.097869e+01  7.629637e+02 1204.40906
#> lp__         -2.537035e+03 -2.534291e+03 -2.531361e+03 -2.526569e+03  242.08025
#>                   Rhat
#> alpha1       1.0006390
#> alpha2       0.9997486
#> alpha3       0.9999655
#> tau_alpha1   1.0023789
#> tau_alpha2   1.0060590
#> tau_alpha3   1.0005442
#> mu_alpha1    1.0039620
#> mu_alpha2    0.9997144
#> mu_alpha3    1.0015442
#> sigma_alpha1 1.0019918
#> sigma_alpha2 1.0000931
#> sigma_alpha3 0.9997146
#> lp__         1.0215691
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.

# }