Skip to contents

Refers to section 10.3

Usage

hierarchical_bayesian_model(
  age,
  pos = NULL,
  tot = NULL,
  status = NULL,
  type = "far3",
  chains = 1,
  warmup = 1500,
  iter = 5000
)

Arguments

age

the age vector

pos

the positive count vector (optional if status is provided).

tot

the total count vector (optional if status is provided).

status

the serostatus vector (optional if pos & tot are provided).

type

type of model ("far2", "far3" or "log_logistic")

chains

number of Markov chains

warmup

number of warmup runs

iter

number of iterations

Value

a list of class hierarchical_bayesian_model with 6 items

datatype

type of datatype used for model fitting (aggregated or linelisting)

df

the dataframe used for fitting the model

type

type of bayesian model far2, far3 or log_logistic

info

parameters for the fitted model

sp

seroprevalence

foi

force of infection

Examples

# \donttest{
df <- mumps_uk_1986_1987
model <- hierarchical_bayesian_model(age = df$age, pos = df$pos, tot = df$tot, type="far3")
#> 
#> SAMPLING FOR MODEL 'fra_3' NOW (CHAIN 1).
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: 
#> Chain 1: Gradient evaluation took 4.7e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.47 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 5000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 5000 [ 10%]  (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%]  (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%]  (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%]  (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%]  (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 7.228 seconds (Warm-up)
#> Chain 1:                6.965 seconds (Sampling)
#> Chain 1:                14.193 seconds (Total)
#> Chain 1: 
#> Warning: There were 568 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
model$info
#>                       mean      se_mean           sd          2.5%
#> alpha1        1.401214e-01 3.547730e-04 6.258881e-03  1.285380e-01
#> alpha2        1.993669e-01 4.755861e-04 8.363286e-03  1.848245e-01
#> alpha3        8.856149e-03 3.568605e-04 7.071400e-03  4.349792e-04
#> tau_alpha1    1.655955e-01 3.058673e-02 3.947079e-01  1.762069e-06
#> tau_alpha2    1.324341e-01 2.370415e-02 2.930593e-01  2.488436e-06
#> tau_alpha3    7.120083e-01 1.464684e-01 1.637538e+00  3.348306e-06
#> mu_alpha1     5.309619e+00 2.830580e+00 5.072469e+01 -1.011749e+02
#> mu_alpha2     4.377174e+00 4.306267e+00 5.440375e+01 -1.063688e+02
#> mu_alpha3     9.083521e-01 2.602170e+00 3.312617e+01 -8.185717e+01
#> sigma_alpha1  1.438473e+02 3.692646e+01 1.158127e+03  8.186990e-01
#> sigma_alpha2  1.074171e+02 2.011728e+01 7.564462e+02  9.330434e-01
#> sigma_alpha3  1.890636e+02 9.517393e+01 5.132818e+03  3.995507e-01
#> lp__         -2.535748e+03 4.167295e-01 4.060532e+00 -2.544257e+03
#>                        25%           50%           75%         97.5%      n_eff
#> alpha1        1.356498e-01  1.399529e-01  1.441737e-01  1.532028e-01  311.23776
#> alpha2        1.933265e-01  1.992242e-01  2.047900e-01  2.172946e-01  309.23995
#> alpha3        3.306703e-03  7.023647e-03  1.243968e-02  2.624763e-02  392.65737
#> tau_alpha1    2.035679e-04  5.030110e-03  1.052841e-01  1.491946e+00  166.52741
#> tau_alpha2    2.822231e-04  4.927917e-03  8.502226e-02  1.148673e+00  152.84887
#> tau_alpha3    7.431981e-04  1.625552e-02  4.147886e-01  6.264065e+00  124.99567
#> mu_alpha1    -6.110784e+00  3.366331e-01  1.043346e+01  1.227509e+02  321.13506
#> mu_alpha2    -6.218693e+00  2.605688e-01  1.018331e+01  1.451005e+02  159.60841
#> mu_alpha3    -3.304551e+00  5.251649e-02  3.947081e+00  8.569737e+01  162.05831
#> sigma_alpha1  3.081901e+00  1.409975e+01  7.008830e+01  7.534708e+02  983.64134
#> sigma_alpha2  3.429523e+00  1.424519e+01  5.952645e+01  6.339306e+02 1413.89599
#> sigma_alpha3  1.552697e+00  7.843314e+00  3.668159e+01  5.465076e+02 2908.54511
#> lp__         -2.538286e+03 -2.535437e+03 -2.532915e+03 -2.528247e+03   94.94175
#>                   Rhat
#> alpha1       1.0003681
#> alpha2       1.0002450
#> alpha3       1.0064494
#> tau_alpha1   1.0035818
#> tau_alpha2   1.0137683
#> tau_alpha3   1.0023225
#> mu_alpha1    1.0024548
#> mu_alpha2    1.0050142
#> mu_alpha3    1.0061848
#> sigma_alpha1 0.9997586
#> sigma_alpha2 1.0009646
#> sigma_alpha3 0.9997631
#> lp__         1.0214395
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.

# }