Skip to contents

Refers to section 10.3

Usage

hierarchical_bayesian_model(
  age,
  pos = NULL,
  tot = NULL,
  status = NULL,
  type = "far3",
  chains = 1,
  warmup = 1500,
  iter = 5000
)

Arguments

age

the age vector

pos

the positive count vector (optional if status is provided).

tot

the total count vector (optional if status is provided).

status

the serostatus vector (optional if pos & tot are provided).

type

type of model ("far2", "far3" or "log_logistic")

chains

number of Markov chains

warmup

number of warmup runs

iter

number of iterations

Value

a list of class hierarchical_bayesian_model with 6 items

datatype

type of datatype used for model fitting (aggregated or linelisting)

df

the dataframe used for fitting the model

type

type of bayesian model far2, far3 or log_logistic

info

parameters for the fitted model

sp

seroprevalence

foi

force of infection

Examples

# \donttest{
df <- mumps_uk_1986_1987
model <- hierarchical_bayesian_model(age = df$age, pos = df$pos, tot = df$tot, type="far3")
#> 
#> SAMPLING FOR MODEL 'fra_3' NOW (CHAIN 1).
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.000121 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 5000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 5000 [ 10%]  (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%]  (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%]  (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%]  (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%]  (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 49.2 seconds (Warm-up)
#> Chain 1:                130.397 seconds (Sampling)
#> Chain 1:                179.597 seconds (Total)
#> Chain 1: 
#> Warning: There were 754 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: There were 441 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
#> https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is 1.14, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
model$info
#>                       mean      se_mean           sd           2.5%
#> alpha1        2.125727e+76 1.873582e+76 9.857746e+77   2.086006e+01
#> alpha2        3.051760e+78 2.980399e+78 4.985109e+79   7.962382e+04
#> alpha3        1.709108e-01 8.195715e-04 3.146095e-03   1.667742e-01
#> tau_alpha1    9.889012e-02 9.193690e-02 9.748461e-01  1.841235e-105
#> tau_alpha2    9.395319e-08 5.345279e-08 2.296888e-06  3.584028e-143
#> tau_alpha3    2.376998e+01 1.514506e+01 3.586927e+01   3.939792e-06
#> mu_alpha1     5.884438e+00 2.884030e+00 8.530155e+01  -1.779321e+02
#> mu_alpha2    -6.249001e+00 2.874228e+00 8.427984e+01  -1.765891e+02
#> mu_alpha3     2.225693e+00 1.190663e+00 3.571111e+01  -6.603497e+01
#> sigma_alpha1  4.361931e+76 4.013065e+76 2.138431e+78   8.260705e+00
#> sigma_alpha2  2.579272e+78 2.446088e+78 3.697949e+79   1.367125e+05
#> sigma_alpha3  1.230550e+02 5.486590e+01 2.280212e+03   1.035053e-01
#> lp__         -2.656979e+03 6.507088e-01 3.424670e+00  -2.664633e+03
#>                        25%           50%           75%         97.5%
#> alpha1        8.767568e+05  1.423411e+07  3.050902e+17  6.171746e+52
#> alpha2        8.417773e+16  3.154072e+31  6.436364e+45  5.309616e+70
#> alpha3        1.678333e-01  1.706392e-01  1.732886e-01  1.774482e-01
#> tau_alpha1    5.135079e-36  1.156093e-15  9.727284e-13  1.465456e-02
#> tau_alpha2    1.258968e-92  2.263345e-64  5.752806e-35  5.354637e-11
#> tau_alpha3    3.709497e-03  5.060957e-01  6.172539e+01  9.334150e+01
#> mu_alpha1    -3.590809e+01  8.194513e+00  4.749799e+01  1.806975e+02
#> mu_alpha2    -4.023764e+01 -3.018942e+01  4.648757e+01  1.754870e+02
#> mu_alpha3    -5.309773e-01  1.943059e-01  1.069483e+00  1.061274e+02
#> sigma_alpha1  1.013921e+06  2.943244e+07  4.414435e+17  4.255456e+52
#> sigma_alpha2  1.325968e+17  6.648715e+31  8.912360e+45  1.677776e+71
#> sigma_alpha3  1.272823e-01  1.405673e+00  1.641884e+01  5.038258e+02
#> lp__         -2.659324e+03 -2.656303e+03 -2.654219e+03 -2.652050e+03
#>                    n_eff      Rhat
#> alpha1       2768.279665 0.9999745
#> alpha2        279.769550 1.0034368
#> alpha3         14.735669 1.0976911
#> tau_alpha1    112.432650 1.0077260
#> tau_alpha2   1846.455170 1.0000195
#> tau_alpha3      5.609229 1.2258454
#> mu_alpha1     874.811304 0.9997411
#> mu_alpha2     859.815120 1.0045739
#> mu_alpha3     899.556899 0.9997474
#> sigma_alpha1 2839.474300 1.0000051
#> sigma_alpha2  228.548178 1.0045025
#> sigma_alpha3 1727.211679 1.0005627
#> lp__           27.699006 1.0232961
plot(model)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.

# }