Skip to contents

Refers to section 10.3

Usage

hierarchical_bayesian_model(
  data,
  type = "far3",
  chains = 1,
  warmup = 1500,
  iter = 5000
)

Arguments

data

the input data frame, must either have `age`, `pos`, `tot` columns (for aggregated data) OR `age`, `status` for (linelisting data)

type

type of model ("far2", "far3" or "log_logistic")

chains

number of Markov chains

warmup

number of warmup runs

iter

number of iterations

Value

a list of class hierarchical_bayesian_model with 6 items

datatype

type of datatype used for model fitting (aggregated or linelisting)

df

the dataframe used for fitting the model

type

type of bayesian model far2, far3 or log_logistic

info

parameters for the fitted model

sp

seroprevalence

foi

force of infection

sp_func

function to compute seroprevalence given age and model parameters

foi

function to compute force of infection given age and model parameters

Examples

# \donttest{
df <- mumps_uk_1986_1987
model <- hierarchical_bayesian_model(df, type="far3")
#> 
#> SAMPLING FOR MODEL 'fra_3' NOW (CHAIN 1).
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: Rejecting initial value:
#> Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
#> Chain 1:   Stan can't start sampling from this initial value.
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.000123 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.23 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 5000 [  0%]  (Warmup)
#> Chain 1: Iteration:  500 / 5000 [ 10%]  (Warmup)
#> Chain 1: Iteration: 1000 / 5000 [ 20%]  (Warmup)
#> Chain 1: Iteration: 1500 / 5000 [ 30%]  (Warmup)
#> Chain 1: Iteration: 1501 / 5000 [ 30%]  (Sampling)
#> Chain 1: Iteration: 2000 / 5000 [ 40%]  (Sampling)
#> Chain 1: Iteration: 2500 / 5000 [ 50%]  (Sampling)
#> Chain 1: Iteration: 3000 / 5000 [ 60%]  (Sampling)
#> Chain 1: Iteration: 3500 / 5000 [ 70%]  (Sampling)
#> Chain 1: Iteration: 4000 / 5000 [ 80%]  (Sampling)
#> Chain 1: Iteration: 4500 / 5000 [ 90%]  (Sampling)
#> Chain 1: Iteration: 5000 / 5000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 14.459 seconds (Warm-up)
#> Chain 1:                3.506 seconds (Sampling)
#> Chain 1:                17.965 seconds (Total)
#> Chain 1: 
#> Warning: There were 1634 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is 1.3, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
model$info
#>                       mean      se_mean           sd          2.5%
#> alpha1        1.374349e-01 2.469659e-03 7.304112e-03  1.256108e-01
#> alpha2        1.971191e-01 2.365928e-03 8.668356e-03  1.840890e-01
#> alpha3        8.361884e-03 9.115459e-04 6.405086e-03  6.530832e-04
#> tau_alpha1    3.232071e-02 8.114025e-03 7.619259e-02  1.649675e-05
#> tau_alpha2    6.679641e-01 2.734528e-01 1.028098e+00  6.526141e-06
#> tau_alpha3    5.874325e-02 1.502771e-02 1.094519e-01  6.639239e-06
#> mu_alpha1    -5.831428e+00 1.717162e+00 3.215799e+01 -7.580347e+01
#> mu_alpha2     1.899729e+00 2.488519e+00 3.501723e+01 -7.316053e+01
#> mu_alpha3     7.615985e+00 1.031699e+01 6.091801e+01 -9.637830e+01
#> sigma_alpha1  8.046101e+01 3.723283e+01 1.601118e+03  1.845717e+00
#> sigma_alpha2  5.050277e+01 1.023182e+01 2.116087e+02  5.704865e-01
#> sigma_alpha3  6.396098e+01 1.470747e+01 3.041621e+02  1.532948e+00
#> lp__         -2.535346e+03 8.603892e-01 3.512983e+00 -2.543226e+03
#>                        25%           50%           75%         97.5%
#> alpha1        1.309418e-01  1.381552e-01  1.433022e-01  1.496570e-01
#> alpha2        1.903549e-01  1.978268e-01  2.027656e-01  2.136976e-01
#> alpha3        2.918675e-03  7.742625e-03  1.200969e-02  2.372548e-02
#> tau_alpha1    8.305591e-04  3.669129e-03  1.367782e-02  2.935416e-01
#> tau_alpha2    1.304788e-03  6.628968e-02  1.133317e+00  3.072622e+00
#> tau_alpha3    5.987982e-04  7.336155e-03  5.747848e-02  4.255445e-01
#> mu_alpha1    -1.143099e+01 -2.676034e+00  2.767768e+00  4.919579e+01
#> mu_alpha2    -1.520815e+00  4.404344e-01  2.365690e+00  8.958812e+01
#> mu_alpha3    -3.895228e+00 -3.255963e-03  4.586351e+00  2.369248e+02
#> sigma_alpha1  8.550509e+00  1.650901e+01  3.469882e+01  2.462098e+02
#> sigma_alpha2  9.393433e-01  3.883981e+00  2.768415e+01  3.914472e+02
#> sigma_alpha3  4.171069e+00  1.167549e+01  4.086578e+01  3.880977e+02
#> lp__         -2.537755e+03 -2.535076e+03 -2.532816e+03 -2.529997e+03
#>                    n_eff      Rhat
#> alpha1          8.747031 1.1212692
#> alpha2         13.423642 1.0897105
#> alpha3         49.373384 1.0283578
#> tau_alpha1     88.176492 1.0039526
#> tau_alpha2     14.135280 1.3042242
#> tau_alpha3     53.047004 0.9997529
#> mu_alpha1     350.715887 1.0015192
#> mu_alpha2     198.007524 1.0074621
#> mu_alpha3      34.864649 1.0304100
#> sigma_alpha1 1849.244902 0.9999612
#> sigma_alpha2  427.721511 1.0054612
#> sigma_alpha3  427.695365 1.0184599
#> lp__           16.671016 1.1939938
plot(model)

# }