Skip to contents

Process assay test result to titer

Usage

to_titer(
  df,
  model = "4PL",
  positive_threshold = NULL,
  ci = 0.95,
  negative_control = TRUE
)

Arguments

df

- a standardized data.frame generated by`standardize_data()`

model

- either the name of a built-in model to fit standard curve or a named list of 2 functions for "mod" and "quantify_ci"

positive_threshold

- if not NULL, processed_data will have the serostatus labeled

ci

- confidence interval for the titer estimates

negative_control

- if TRUE, output tibble will include the result for negative controls

Value

a data.frame with 8 columns

plate_id

id of the plate

data

list of `data.frame`s containing the results from each plate

antitoxin_df

list of `data.frame`s containing the results for antitoxins from each plate

standard_curve_func

list of functions mapping from OD to titer for each plate

std_crv_midpoint

midpoint of the standard curve, for qualitative analysis

processed_data

list of `tibble`s containing samples with titer estimates (lower, median, upper)

negative_control

list of `tibble`s containing negative control check results (if `negative_control=TRUE`)