Process assay test result to titer
Arguments
- df
- a standardized data.frame generated by`standardize_data()`
- model
- either the name of a built-in model to fit standard curve or a named list of 2 functions for "mod" and "quantify_ci"
- positive_threshold
- if not NULL, processed_data will have the serostatus labeled
- ci
- confidence interval for the titer estimates
- negative_control
- if TRUE, output tibble will include the result for negative controls
Value
a data.frame with 8 columns
- plate_id
id of the plate
- data
list of `data.frame`s containing the results from each plate
- antitoxin_df
list of `data.frame`s containing the results for antitoxins from each plate
- standard_curve_func
list of functions mapping from OD to titer for each plate
- std_crv_midpoint
midpoint of the standard curve, for qualitative analysis
- processed_data
list of `tibble`s containing samples with titer estimates (lower, median, upper)
- negative_control
list of `tibble`s containing negative control check results (if `negative_control=TRUE`)